



## ANCIT

### ECU SIMULATION AND TESTING 2 WEEKS TRAINING (80 Hrs)

Company Confidential ANCIT



| Delivery Format<br>Duration | : | This Course is offered in Classroom or Online Format<br>80 Hours ( 2 Weeks)                                                                          |
|-----------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Target Group                | : | Embedded Engineers working in AUTOMOTIVE and Unit Testers, Manual Testers who wish to switch their carrier into the Automotive System Testing Domain |
| Prerequisites               | : | Freshers or Laterals with Basic C Programming Knowledge                                                                                              |
| Outcome                     | : | Basics of Automotive, Intro to Tools for Testing, CAPL Scripting, Testing Process and UDS                                                            |

#### Day 1.

- 1. Introduction to Automotive
  - What and Why?
  - Major systems
  - Electronification of automotive
  - What is ECU?
  - Networking
  - Protocol
- 2. V model Life cycle
  - Why V model and How it works?
  - Phases in V model
- 3. Major domains and it's subsystems
  - Chassis and Body control module
  - Engine system
  - The Lubrication system
  - The coolant system
  - Fuel Supply system
  - Transmission system
  - Front and Rear wheel Axles
  - Steering and Suspension system
  - Wheel, Tyre and Brake
  - Electrical or Electronic and Air Conditioning Systems
  - Active and Passive Safety
- 4. Network communication
  - Why we need networking inside the CAR?
  - How it works?
  - How the communication happens between same or different networks?
  - Available networks an overview
- 5. Partner ECU's
  - What is Partner ECU?
  - Why Partner ECU?
  - How do we create the partner ECUs?
- 6. DBC file
  - · How the system knows about the communication signals
  - Necessity of message, Signals, Node, Network
  - Tools to create the database
- 7. Introduction to Testing
  - Why testing process is required?
  - Importance of testing



### Day 2.

- 1. Introduction to tools for testing
  - CANoe
  - Why CANoe?
  - Advantage of using CANoe
  - How to use CANoe
- 2. CAN protocol
  - Why CAN is preferred?
  - What is CAN?
  - How it works?
- 3. ECU simulation in CAN using CANoe
  - Working with IG block and sending CAN messages in CANoe
  - Overview of different windows in CANoe
  - Sending a CAN message inside DBC
  - Explain a use case
- 4. DBC creation
  - Using CANdb++ editor
- 5. Usage of CAPL
  - Message handling
  - Diagnostic handling
  - Test automation
- 6. Introduction to the CAPL browser
  - Method of accessing CAPL browser
  - Introduction to menus in CAPL browser
  - Programming rules in CAPL browser(Do and Don'ts)
  - Compilation(Runtime errors)
  - Debugging(Enable, disable, enable all, disable all)
  - Import CANoe or CANalyzer environment

#### Day 3.

- 1. Network nodes and Test nodes
  - Introduction of Network node
  - Insert network node and link with CAPL file
  - Debugging of network node
  - Edit the existing CAPL file
  - Open node panel(if DBC linked)
  - Open and Configure IL configuration



### Day 3.

- 2. Network nodes and Test nodes contd.,
  - Block active, Inactive and Remove
  - Introduction to Tester node
  - Insert a tester node and link with CAPL
  - Compilation and Execution
  - Block active, Inactive and Remove(Tester node)
  - Introduction to XML test module
  - Test Script Linking and Execution
- 3. Variables, operators, conditions and loops
  - Introduction to variables
  - Handling variables
  - Introduction to operators, conditions and loops in CAPL
  - Handling operators, conditions, loops
- 4. Evaluation for CAPL basics
- 5. CAPL programming
  - Event Message Transmission
  - · Working with timers
  - Periodic Message Transmission
  - Conditionally Periodic Message Transmission
  - Signal Handling during transmission
  - Signal interpretation by logic(eg., ignition on engine run)
  - Signal accessing with and without DBC
  - Environmental variable handling
  - · System variable handling
  - Handling on pre start(), on pre stop()
  - Handling on start(), on stop Measurement()
  - Handling key events
  - Handling on message, on \*
  - Handling on busoff(), on error Active(), on error passive(), on error frame()
  - Message analysis with CAPL
  - Functions available in CAPL

#### Day 4.

- 1. Panel Designing
  - Introduction to the Panel Designer
  - Creating display and control panels
  - Integrating panels in CANoe
  - Panels in combination with Signal Generators
- 2. Use case 1(Seat Belt ECU)
  - Network node creation
  - Partner ECU simulation
  - Designing panel
  - Testing through panel



### Day 3.

- 2. Network nodes and Test nodes contd.,
  - Block active, Inactive and Remove
  - Introduction to Tester node
  - Insert a tester node and link with CAPL
  - Compilation and Execution
  - Block active, Inactive and Remove(Tester node)
  - Introduction to XML test module
  - Test Script Linking and Execution
- 3. Variables, operators, conditions and loops
  - Introduction to variables
  - Handling variables
  - · Introduction to operators, conditions and loops in CAPL
  - Handling operators, conditions, loops
- 4. Evaluation for CAPL basics
- 5. CAPL programming
  - Event Message Transmission
  - · Working with timers
  - Periodic Message Transmission
  - Conditionally Periodic Message Transmission
  - Signal Handling during transmission
  - Signal interpretation by logic(eg., ignition on engine run)
  - Signal accessing with and without DBC
  - Environmental variable handling
  - · System variable handling
  - Handling on pre start(), on pre stop()
  - Handling on start(), on stop Measurement()
  - Handling key events
  - Handling on message, on \*
  - Handling on busoff(), on error Active(), on error passive(), on error frame()
  - Message analysis with CAPL
  - Functions available in CAPL

#### Day 4.

- 1. Panel Designing
  - Introduction to the Panel Designer
  - Creating display and control panels
  - Integrating panels in CANoe
  - Panels in combination with Signal Generators
- 2. Use case 1(Seat Belt ECU)
  - Network node creation
  - Partner ECU simulation
  - Designing panel
  - Testing through panel



### Day 5.

- 1. Use case 2(Tyre Pressure Monitoring System)
  - Network node creation
  - Partner ECU simulation
  - Designing panel
  - Testing through panel
- 2. Use case 3(Air bag system)
  - Network node creation
  - Partner ECU simulation
  - Designing panel
  - Testing through panel

### Day 6.

- 1. Use case 4(Automated Emergency Braking)
  - Network node creation
  - Partner ECU simulation
  - Designing panel
  - Testing through panel
- 2. Use case 5(Door Control Module) (Evaluation)
  - Network node creation
  - Partner ECU simulation
  - Designing panel
  - Testing through panel

### Day 7.

- 1. Testing process
  - Why testing process is required?
    - V model and waterfall model, Agile process, Fish bone model
  - Advantage of V model in Automotive Domain
- 2. Master test plan preparation
  - Master test plan needs?
  - Template preparation
  - Project estimation technique[Project complexity and duration]
  - Man power selection guide
- 3. Testing methodology
  - Static code and dynamic code analysis
  - Unit testing
  - SW Integration Test
  - Hardware Test
  - SW & HW integration test
  - Smoke test
  - Regression test
  - System testing



### Day 7.

- 4. Testing technique
  - Error guessing
  - Boundary testing
  - Range Test
  - Positive & negative Test
  - White-Box Test
  - Blackbox test
  - Gray-Box test
- 5. Testing Domain Selection
  - Model in loop testing
  - Software in loop testing
  - Bench Test {CANoe}
  - Hardware in Loop testing
  - Driver in Loop testing
  - Vehicle in loop testing
  - Acceptance testing on Vehicle
- 6. Test setup preparation
  - Power Supply[Normal, Arbitrary Supply, Pulse Generator]
  - CAN communication device [CANCASE,VN1630,PCAN]
  - Break-In-Break-Out[BIBO] box
  - Harness [ECU to BIBO box, Power Supply to BIBO, BIBO to CANCASE]
  - Termination resistor[High speed communication]
- 7. Test specification preparation
  - Prepare the Testcase skeleton [Precondition, Action, Expectation]
  - Write the test step for each requirement
  - Linking the requirement with Testcase and assign unique number[Testcase ID] for the testcase
  - Traceability of the customer requirement to Testcase
  - Call for Testcase review
- 8. Test execution methodology selection
  - Test execution selection guide preparation based on the Test domain availability
  - Test execution selection : Manual or automation
  - Test script development and linking the Testcase ID with ID
  - Test script robustness checks



#### Day 8.

- 1. Test report preparation
  - Based on the test execution method, report updating in requirement management tool
  - · Test result analysis and find the reasonable results
  - Update the results in requirement management system [including bug ID for failed testcase]
  - Generating the Test report with final traceability which can be shared with Customer
- 2. Software bug reporting
  - Analysis the failed testcase and find the Root cause
  - write the bug report with short & long description which understandable by Developer
  - Linking the testcase ID with bug ID for traceability
- 3. Working with test node in CAPL
  - Test script writing for use case 1 &2
  - Report generation
- 4. Test node
  - Test script writing for use case 1, 2 & 3
  - Report generation
- 5. Evaluation of Test Scripting

#### Day 9.

- 1. CAPL for UDS
  - Stored Data Transmission Services
  - Diagnostics P-Code and Fault Codes
  - Remote Activation of Routines
  - IO Controls services
  - Upload and Download Services
  - Software Update
  - Functional and Non-functional diagnostics introduction
  - Functional and Non-functional diagnostics in detail
  - Automation of diagnostics
- 2. Hands on for UDS
  - Diagnostic session control(0x10)

#### Day 10.

- 1. Hands on for UDS for the majorly used Services
  - Tester Present(0x3E)
  - Security Access(0x27)
  - Read Data by identifier(0x22)
  - Write Data by identifier(0x2E)
- 2. Evaluation of UDS
- 3. Traceability
- 4. Working with JIRA & DOORS tool
- 5. ASPICE
- 6.8D principles
- 7. ADAS
- 8. Cyber security basics
- 9. Test Automation basics

# ANCIT

SNO : 37 Gurusamy Nagar, Codissia Road, Peelamedu,Coimbatore, Tamil Nadu, India- 641004

+91-9840378602/9483541953

info@ancitconsulting.com

www.ancitconsulting.com www.ancitedutech.com